Abstract

An off-board dc fast battery charger for electric vehicles (EVs) with an original control strategy aimed to provide ripple-free output current in the typical EV batteries voltage range is presented in this article. The proposed configuration is based on modular three-phase interleaved converters and supplied by the low-voltage ac grid. The ac/dc interleaved three-phase active rectifier is composed of three standard two-level three-phase converter modules with a possibility to slightly adjust the dc-link voltage level in order to null the output current ripple. A modular interleaved dc/dc converter, formed by the same three-phase converter modules connected in parallel, is used as an interface between the dc link and the battery. The use of low-cost, standard and industry-recognized three-phase power modules for high-power fast EV charging stations enables the reduction of capital and maintenance costs of the charging facilities. The effect of coupling on the individual input/output inductors and total input/output current ripples has been investigated as well, considering both possible coupling implementations, i.e., inverse and direct coupling. Numerical simulations are reported to confirm the feasibility and the effectiveness of the whole EV fast charging configuration, including the proposed control strategy aimed to null the ripple of the output current. Experimental results are provided by a reduced scale prototype of the output stage to verify the ripple-free output current operation capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.