Abstract

In this paper we present an output feedback based Adaptive Robust Fault Tolerant Control (ARFTC) strategy to solve the problem of output tracking in presence of actuator failures, disturbances and modeling uncertainties for a class of nonlinear systems. The class of faults addressed here include stuck actuators, actuator loss of efficiency or a combination of the two. We assume no a priori information regarding the instant of failure, failure pattern or fault size. The ARFTC combines the robustness of sliding mode controllers with the online learning capabilities of adaptive control to accommodate sudden changes in system parameters due to actuator faults. Comparative simulation studies are carried out on a nonlinear hypersonic aircraft model, which shows the effectiveness of the proposed scheme over back-stepping based robust adaptive fault-tolerant control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.