Abstract

The Pleistocene-Recent volcanism of this arc extends nearly linearly NNE from northern New Zealand for some 2800 km. Along its western margin lies an active marginal basin (Lau Basin and Havre Trough) which has its southern termination in the Taupo volcanic zone (TVZ, New Zealand). The New Zealand arc segment is developed within a continental crust, whereas the Tonga-Kermadec segments are developed on a ridge system within the oceanic basin. Submarine morphology suggests that the Kermadec volcanoes represent a less advanced stage of evolution relative to those of Tonga. Magmas erupted within the TVZ are dominantly rhyolitic (≈16,000 km 3) with subordinate andesites and rare high-alumina tholeiites and dacites. The Kermadec Islands are dominated by tholeiites and basaltic andesites, with subordinate andesites and dacites. The Tongan Islands are dominated by basaltic andesites, with locally developed andesites and dacites. These Tonga-Kermadec lavas are characterised by subcalcic groundmass clinopyroxenes, whereas the younger group of TVZ andesites contain groundmass hypersthene and augite. Geochemically, the TVZ andesites are systematically enriched (relative to those of Tonga-Kermadec) in “incompatible” elements (e.g. K, Rb, Cs, Ba, light REE, U, Th, Zr, Pb), are less Fe-enriched, and contain more radiogenic Sr and Pb (excepting certain 207Pb/ 204Pb compositions). The evidence points to crustal equilibration of the TVZ andesites prior to eruption. A complete overlap of major and trace element chemistry (including TiO 2) is observed between the Kermadec-TVZ tholeiites and basaltic andesites, and the ocean floor tholeiites of the Lau Basin. Compared to the Tongan lavas, those of the Kermadecs exhibit a greater degree of chemical variability, also reflected in the greater heterogeneity in their Pb isotopic compositions. Moreover, many of the Tonga-Kermadec basaltic andesites exhibit more depleted “incompatible” trace element abundances than the Kermadec and TVZ tholeiites. The “primary” magmas of this arc are interpreted to be of basaltic andesite type, derived from Benioff zone melting (essentially anhydrous), but extensively modified by low-pressure crystal fractionation processes. The Kermadec tholeiites are explained as products of relatively shallow upper mantle partial fusion induced during the earlier stages of diapiric rise of Benioff zone-derived magmas, which are sufficiently hot to intersect the peridotite solidus. This should result in the production and intermixing of a series of magmas extending from olivine tholeiite to basaltic andesite composition. The voluminous rhyolites of TVZ are interpreted as the products of crustal fusion involving Mesozoic sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call