Abstract

A common structure in convex mixed-integer nonlinear programs (MINLPs) is separable nonlinear functions. In the presence of such structures, we propose three improvements to the outer approximation algorithms. The first improvement is a simple extended formulation, the second is a refined outer approximation, and the third is a heuristic inner approximation of the feasible region. As a side result, we exhibit a simple example where a classical implementation of the outer approximation would take an exponential number of iterations, whereas it is easily solved with our modifications. These methods have been implemented in the open source solver Bonmin and are available for download from the Computational Infrastructure for Operations Research project website. We test the effectiveness of the approach on three real-world applications and on a larger set of models from an MINLP benchmark library. Finally, we show how the techniques can be extended to perspective formulations of several problems. The proposed tools lead to an important reduction in computing time on most tested instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.