Abstract

This paper presents a high-accuracy local positioning system (LPS) for an autonomous robotic greens mower. The LPS uses a sensor tower mounted on top of the robot and four active beacons surrounding a target area. The proposed LPS concurrently determines robot location using a lateration technique and calculates orientation using angle measurements. To perform localization, the sensor tower emits an ultrasonic pulse that is received by the beacons. The time of arrival is measured by each beacon and transmitted back to the sensor tower. To determine the robot's orientation, the sensor tower has a circular receiver array that detects infrared signals emitted by each beacon. Using the direction and strength of the received infrared signals, the relative angles to each beacon are obtained and the robot orientation can be determined. Experimental data show that the LPS achieves a position accuracy of 3.1 cm RMS, and an orientation accuracy of 0.23° RMS. Several prototype robotic mowers utilizing the proposed LPS have been deployed for field testing, and the mowing results are comparable to an experienced professional human worker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.