Abstract
Thresholding is a type of image segmentation, where the pixels change to make the image easier to analyze. In bi-level thresholding, the image in grayscale format is transformed into a binary format. The traditional methods for image thresholding may be inefficient in finding the best threshold and take longer computation time. Recently, metaheuristic swarm-based algorithms were applied for optimization in different applications to find optimal solutions with minimum computational time. The proposed work aims to optimize the fitness function obtained by the Otsu algorithm using a metaheuristic swarm-based algorithm called the bat algorithm. As a result, the optimal threshold value for bi-level images in cloud detection was obtained. Also, one of the trajectory-based algorithms called hill climbing was applied to optimize the fitness function taken from the Otsu algorithm. The HYTA dataset was used to evaluate the work, which was later confirmed through testing. The findings of experiments indicated that the developed algorithm is promising and the performance of the metaheuristic population-based algorithm is better than the trajectory-based algorithm in terms of efficiency and computational time for image thresholding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.