Abstract

The primary purpose of this paper is to give an oscillation theory for second-order integral differential equations. It is shown that this theory follows in a natural way as “a corollary” from the more abstract approximation theory of quadratic forms given previously by the author. Thus, our ideas are primarily constructive and quantitative as opposed to the usual qualitative methods. We also note that the usual oscillation theory for second-order differential equations follows directly by our methods. Furthermore, our methods provide a unified theory for eigenvalue problems, optimization problems, and numerical approximation problems within this setting. In Section 1 we give the preliminaries for the remainder of the paper. In Section 2 we define the basic quadratic form and integral differential equation and give the relationships between them. These relationships are used (in Section 3) to give a theory of oscillation in our setting and some basic oscillation results. Finally, in Section 4 we give some deeper oscillation results. To emphasize the unifying methods of our ideas, this paper is presented as a companion paper to “A Numerical Approximation Theory for Second Order Integral Differential Equations.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call