Abstract
An infinitesimal, orthotropic theory of viscoplasticity based on overstress for thermo-mechanical loading (TVBO) is presented. The total strain rate is the sum of elastic, inelastic and thermal strain rates. An orthotropic constitutive law is postulated for each strain rate using the characteristics of orthotropic matrices and previous isotropie formulations of the viscoplasticity theory as a guide. All material functions and constants can be functions of current temperature and no influence of temperature history is modeled. Yield surfaces and loading/unloading conditions are not used in the theory in which the inelastic strain rate is solely a function of the overstress. the difference between stress and the equilibrium stress, a state variable of the theory. A comparatively simple theory is obtained which is capable of modeling important phenomena like creep, relaxation, rate sensitivity, hysteresis, tension/compression asymmetry and nearly elastic regions. It is also possible to model quasielastic behavior in one direction while the others behave viscoplastically. The theory is shown to reduce to a previously proposed formulation for inelastic incompressibility and isotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.