Abstract

The use of robotic rehabilitation in orthopaedics has been briefly explored. Despite its possible advantages, the use of computer-assisted physiotherapy of patients with musculoskeletal injuries has received little attention. In this paper, we detailed the development and evaluation of a robotic-assisted rehabilitation system as a new methodology of assisted physiotherapy in orthopaedics. The proposal consists of an enhanced end-effector haptic interface mounted in a passive mechanism for allowing patients to perform upper-limb exercising and integrates virtual reality games conceived explicitly for assisting the treatment of the forearm after injuries at the wrist or elbow joints. The present methodology represents a new approach to assisted physiotherapy for strength and motion recovery of wrist pronation/supination and elbow flexion-extension movements. We design specific game scenarios enriched by proprioceptive and haptic force feedback in three training modes: passive, active, and assisted exercising. The system allows the therapist to tailor the difficulty level on the observed motion capacity of the patients and the kinesiology measurements provided by the system itself. We evaluated the system through the analysis of the muscular activity of two healthy subjects, showing that the system can assign significant working loads during typical physiotherapy treatment profiles. Subsequently, a group of ten patients undergoing manual orthopaedic rehabilitation of the forearm tested the system, under similar conditions at variable intensities. Patients tolerated changes in difficulty through the tests, and they expressed a favourable opinion of the system through the administered questionnaires, which indicates that the system was well accepted and that the proposed methodology was feasible for the case study for subsequently controlled trials. Finally, a predictive model of the performance score in the form of a linear combination of kinesiology observations was implemented in function of difficult training parameters, as a way of systematically individualising the training during the therapy, for subsequent studies.

Highlights

  • Musculoskeletal disorders or lesions in conjunction are one of the leading causes of chronic disability around the world

  • We developed a robotic system for the orthopaedic rehabilitation of the upper limb, which integrates a novel methodology for assisted physiotherapy in virtual reality (VR) serious games. e system consists of four modules: (1) a robotic rehabilitation device (PERCRO-BRANDO); (2) VR serious games for motion task execution of the forearm; (3) the therapist graphic interface; and (4) and a task difficulty adaptation module based on the monitored patient kinesiological performance through time

  • For assessing the capability of the system for estimating the range of motion of the patients’ movements, a comparative analysis was carried out between the standard clinical RoM outcome manually estimated by the therapist with the manual goniometer (Table 2) and the online estimation performed by the system (RoMpatient) during the calibration step at the beginning of the session (Table 4)

Read more

Summary

Introduction

Musculoskeletal disorders or lesions in conjunction are one of the leading causes of chronic disability around the world. Wrist fractures had a high incidence in the elderly population in 2001 [2]; forearm fractures of the distal radius are the most common in humans [3]. Patients with a distal radial fracture must require staying out of work around 67 days up to 20 weeks for recovery, what poses relevant economic and social implications. At the moment of suffering the radius injury, more than half of the patients are currently employed [4]. A study for evaluating the relationship of pain, occupational performance, and quality of life in a women population after upper limb fractures indicates that half of the reported problems were related with productivity, almost 40% with self-care, and 10% with leisure [5]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.