Abstract

This paper introduces a new orthogonality-based method of extracting scattering parameters (deembedding) from numerical current distributions on microstrip networks. All deembedding methods require sufficient length in the network feed lines that only a fundamental mode arrives at the discontinuity. In our new method, the length of feed lines used to excite a network with only a fundamental mode can be shortened compared with other methods. On that basis, this new method can be used to improve other deembedding methods. Estimates of end susceptance and end conductance of the open-end discontinuity are used for performance evaluation. End conductance computations are highly sensitive to errors in computed numerical reflection coefficients, making the accurate analysis of the open-end discontinuity a particularly challenging deembedding example. Results show that the orthogonality-based method is both stable and accurate. In the case of the open-end discontinuity, significant improvement in performance compared to other deembedding techniques can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.