Abstract
Reliable and efficient avian monitoring tools are required to identify population change and then guide conservation initiatives. Autonomous recording units (ARUs) could increase both the amount and quality of monitoring data, though manual analysis of recordings is time consuming. Machine learning could help to analyze these audio data and identify focal species, though few ornithologists know how to cater this tool for their own projects. We present a workflow that exemplifies how machine learning can reduce the amount of expert review time required for analyzing audio recordings to detect a secretive focal species (Sora; Porzana carolina). The deep convolutional neural network that we trained achieved a precision of 97% and reduced the amount of audio for expert review by ~66% while still retaining 60% of Sora calls. Our study could be particularly useful, as an example, for those who wish to utilize machine learning to analyze audio recordings of a focal species that has not often been recorded. Such applications could help to facilitate the effective conservation of avian populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.