Abstract

BackgroundThe superfamily of serine proteinase inhibitors (serpins) is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. Our interest is focused on the SERPINA3 sub-family. The major human plasma protease inhibitor, α1-antichymotrypsin, encoded by the SERPINA3 gene, is homologous to genes organized in clusters in several mammalian species. However, although there is a similar genic organization with a high degree of sequence conservation, the reactive-centre-loop domains, which are responsible for the protease specificity, show significant divergences.ResultsWe provide additional information by analyzing the situation of SERPINA3 in the bovine genome. A cluster of eight genes and one pseudogene sharing a high degree of identity and the same structural organization was characterized. Bovine SERPINA3 genes were localized by radiation hybrid mapping on 21q24 and only spanned over 235 Kilobases. For all these genes, we propose a new nomenclature from SERPINA3-1 to SERPINA3-8. They share approximately 70% of identity with the human SERPINA3 homologue. In the cluster, we described an original sub-group of six members with an unexpected high degree of conservation for the reactive-centre-loop domain, suggesting a similar peptidase inhibitory pattern. Preliminary expression analyses of these bovSERPINA3s showed different tissue-specific patterns and diverse states of glycosylation and phosphorylation. Finally, in the context of phylogenetic analyses, we improved our knowledge on mammalian SERPINAs evolution.ConclusionOur experimental results update data of the bovine genome sequencing, substantially increase the bovSERPINA3 sub-family and enrich the phylogenetic tree of serpins. We provide new opportunities for future investigations to approach the biological functions of this unusual subset of serine proteinase inhibitors.

Highlights

  • The superfamily of serine proteinase inhibitors is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis

  • Southern blot analyses of SERPINA3 genes Genomic DNA extracted from bovine blood cells was digested to completion with NciI, NcoI and SacI endonucleases

  • Our results indicate that the locus spans over ~235 Kb and contains at least eight SERPINA3 genes with a local order of SERPINA3-1/SERPINA3-2, SERPINA3-6, SERPINA3-3/SERPINA3-4, SERPINA3-7, SERPINA3-5 and SERPINA3-8, and the pseudogene SERPINA3P localized at the 3'end of the cluster

Read more

Summary

Introduction

The superfamily of serine proteinase inhibitors (serpins) is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. The name serpin was originally coined in recognition of the fact that most serpins are inhibitors of serine proteinases. It is clearly inappropriate because few members of this superfamily lacked any proteinase inhibitory properties [2,3]. 500 serpins have been identified to date and can be found in all superkingdoms including animals, plants, bacteria as well as some viruses [4,5] Both extracellular and intracellular serpins have been identified [6]. Human SERPINA3 (α1-antichymotrypsin) is found and identified as a major component of the fibrillary amyloid plaques of brains from patients with Alzheimer's disease, one of the most common forms of dementia [13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call