Abstract

Fouling is one of the barriers to developing more efficient and near-zero emission internal combustion engines. The micron-sized particulate matter is one of the roots of this fouling phenomenon in exhaust gas recirculation (EGR) coolers. This fouling is inadequately evaluated quantitatively, and its deposition mechanism is unknown. To investigate the effect of gravity on the deposition of micron-sized particles, an original nondestructive sampling fouling method and experiment apparatus have been developed to effectively obtain the upper and lower bottom fouling in the cooler in the direction of airflow, and the area proportion, count, and diameter of large particles in the fouling using image processing software. It was found that (i) the area proportion of large particles in the lower bottom fouling was almost 2.5 times higher than the upper bottom fouling; (ii) the count of large particles in the lower bottom fouling was higher, and the maximum diameter was larger, up to 639 μm; (iii) the mass of the lower bottom fouling was 1.5 times higher than the upper bottom fouling; (iv) gravity can significantly promote the deposition of micron-sized particles and should be considered in the design and arrangement of the EGR cooler to prevent fouling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call