Abstract
Abstract Hardware-in-the-loop (HIL) simulation technology, where the part of a system to be verified adopts real objects, is one of the important methods for the research of advanced nuclear power plant (NPP) instrumentation and control (I&C) technology. With the development of advanced NPP I&C technology, especially the multi-module NPP technology, the HIL simulation technology is facing the challenge of communication signals booming and model extension to deal with the requirement of modules increasing and thermal-electricity generation. Driven by the above requirement of research and engineering, it is necessary to develop a novel HIL simulation technology that has well flexible scalability and avoids the high computational burden of the distributed control system (DCS). In this paper, an original distributed simulation method applied to the transformation extension of the NPP I&C HIL simulation verification platform is proposed. The initial opinion of the method is deploying a third-party system utilized for numerical simulation and form a close loop with DCS by network communication. With the support of third-party equipment represented by the real-time target machine, the functions of the system can be flexibly expanded through the MODBUS series protocol, and algorithms with high sampling frequency requirements can be deployed. The method has the characteristics of economical communication consumption, standardized and reliable communication protocol, and flexible downloading models and algorithms mean. Aside from this, due to the relative independence from DCS, the distribute simulation method is promising to be an original platform for verifying the technology advanced control or fault diagnosis in addition to DCS computing servers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.