Abstract

Many efforts have been made to prevent interferences in enzymatic electrochemical biosensors by permselective membranes or mediators with low redox potential. However, it is difficult to completely eliminate interferents without compromised sensitivity by these traditional procedures. We propose here a method based on an origami paper device that separates the electrochemical reactions of interferents and substrates for complete depletion of interferents and precise analysis of substrates. Interferents such as ascorbate, urate and paracetamol were completely consumed by a simple electrolysis step, while substrates were quantitatively analyzed by coulometry. With GOx as a model enzyme, an interference-free and calibration-free coulometric glucose biosensor has been demonstrated successfully. The proposed origami paper device provides a facile and easy-controlled approach to eliminate the electroactive interferents completely for enzymatic electrochemical biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.