Abstract

In this paper, an origami-inspired vibration isolator is proposed and numerically investigated to achieve a quasi-zero-stiffness (QZS) property. A truss-spring based stack Miura-ori (TS-SMO) structure is introduced in the vibration isolation system to provide a desired stiffness for high-static-low-dynamic requirement. The proposed TS-SMO structure is different from the traditional origami structures which include rigid facets and deformable creases. It uses coil spring sets to replace all the creases, to improve the physical realization in engineering applications. Nonlinear force response and the QZS feature can be achieved through the geometric nonlinearity and its unique Poisson’s ratio profile. The static force and stiffness characteristics of the developed TS-SMO structure are numerically discussed to meet specific feature requirements. Then a QZS vibration isolator is presented under specific parameter design. The force–displacement response and stiffness diagram are obtained to verify the static performance as an isolation system. Furthermore, the displacement transmissibility is derived through dynamic analysis by employing both harmonic balance method (HBM) and numerical simulations. The isolation performance under variable viscous damping is also discussed to examine the effects of the system damping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call