Abstract

Owing to the ability to achieve structural changes after manufacturing, reconfigurable structures have great application potential in the products of the future, and should be naturally addressed in engineering design. However, most of the reconfigurable structures require the introduction of new optional components, or the removal of existing components from the system itself, even replacement of components in order to switch from one structural configuration to another, which brings a lot of difficulties and complexities in design, manufacturing and usage phases, that can be partially solved by deploying modularity through the product lifecycle. Another inherent aspect of such structures concerns the self-transformation functionality and the related sequence planning issue that require a specific and different attention in preliminary design.To solve these problems, this paper proposes a new method based on smart materials and 4D printing technology to design and fabricate more compact structures that can realize self-reconfiguration via environmental stimulus without the need to alter sub-structures or components. A tentative design case is presented for the method demonstration. The experimental result shows that the proposed method is capable to achieve more complex reconfigurable structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.