Abstract

The problem of self-pulsing in optically bistable systems is discussed within the framework of imperfect bifurcation theory. The joint appearance of a hysteresis cycle in the cw-transmission curve and of transitions to self-pulsing is described as an interaction between steady-state and Hopf bifurcations induced by varying the incident field intensity. The bifurcation equations for the most degenerate case are shown to be determined by a corank-two and codimension-four polynomial normal form. This form can be extracted from analytical and numerical studies on the Maxwell-Bloch equations, and acts as an organizing center for bistable switching and the self-pulsing mechanism. The structurally stable unfolded bifurcation diagrams are analyzed. Besides describing correctly and in a comprehensive way all bifurcations to self-pulsing that have so far been observed, a number of new generic transitions are predicted. These include self-pulsing from the low transmission branch and transitions leading to the formation of islands with self-pulsing behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.