Abstract

The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call