Abstract
AbstractThe spatial separation between the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) in thermally activated delayed fluorescent (TADF) molecules leads to charge transfer (CT) states, which degrade the oscillator strength of emission transition and sacrifices high solid‐state photoluminescence quantum yield (PLQY), together limiting its application in organic solid‐state lasers (OSSLs). Here, we demonstrated organic microwire lasers from TADF emitters that combine aggregation induced emission (AIE) and local excited (LE) state characteristics. The unique AIE and LE feature lead to a PLQY approaching 50 % and a high optical gain of 870 cm−1 for TADF microwires. The regenerated singlet excitons by reverse intersystem crossing (RISC) process are conducive to population inversion. As a result, we demonstrated microwire lasers around 465 nm with a low threshold of 3.74 μJ cm−2. Therefore, our work provides insight to design TADF materials for OSSLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.