Abstract

Circularly polarized light detection has attracted growing attention because of its unique application in security surveillance and quantum optics. Here, through designing a chiral polymer as a donor, a high-performance circularly polarized light detector is fabricated, successfully enabling detection from ultraviolet (300nm) to near-infrared (1100nm). The chiroptical detector presents an excellent ability to distinguish right-handed and left-handed circularly polarized light, where dissymmetries in detectivity, responsivity, and electric current are obtained and then optimized. The dissymmetry in electric current can be increased from 0.18 to 0.23 once an external magnetic field is applied. This is a very rare report on the dissymmetry tunability by an external field in chiroptical detectors. Moreover, the chirality-generated orbital angular momentum is one of the key factors determining the performance of the circularly polarized light detection. Overall, the organic chiroptical detector presents excellent stability in detection, which provides great potential for future flexible and compact integrated platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.