Abstract

The optimal power flow (OPF) problem with discrete control variables is an NP-hard problem in its exact formulation. To cope with the immense computational-difficulty of this problem, we propose an ordinal optimization theory-based algorithm to solve for a good enough solution with high probability. Aiming for hard optimization problems, the ordinal optimization theory, in contrast to heuristic methods, guarantee to provide a top n% solution among all with probability more than 0.95. The approach of our ordinal optimization theory-based algorithm consists of three stages. First, select heuristically a large set of candidate solutions. Then, use a simplified model to select a subset of most promising solutions. Finally, evaluate the candidate promising-solutions of the reduced subset using the exact model. We have demonstrated the computational efficiency of our algorithm and the quality of the obtained solution by comparing with the competing methods and the conventional approach through simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.