Abstract

Iron impurities in the rutile-TiO2(011) surface can result in the formation of an ordered, ternary iron–titanium oxide monolayer. Here the FeTi2O5 mixed oxide monolayer predicted by DFT simulations is confirmed by synchrotron based angle scanned X-ray photoelectron diffraction (XPD) studies. The ternary oxide monolayer has been synthesized on rutile-TiO2(011) substrate via two different experimental pathways: first, by segregation of Fe impurities from the bulk by annealing a clean TiO2(011) substrate in 1 × 10–7 mbar of oxygen at ∼450 °C and, second, by physical vapor deposition of Fe on clean TiO2(011) in 1 × 10–7 mbar of oxygen at ∼450 °C. For both preparation procedures an intermixed surface oxide is formed with Fe and Ti in 2+ and 4+ charge states, respectively. The surface is characterized by high-resolution and fast X-ray photoelectron spectroscopy (XPS), XPD, and low energy electron diffraction (LEED). Multiple electron scattering simulations implemented in the electron diffraction in atomic clusters (EDAC) package were performed for comparing experimental XPD patterns with structural models. The reliability of the approach was tested on XPD pattern of reconstructed clean TiO2(011)-2 × 1 surface, for which a structural model exists. The XPD pattern of the monolayer ternary iron titanium oxide is compared to structural models proposed by density functional theory (DFT)-based models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.