Abstract
The order scheduling problem is receiving increasing attention in the relatively new but creative area of scheduling research. In order scheduling, several orders are processed on multiple machines, and each order comprises multiple components. The order completion time is defined as the time at which all components in an order are completed. In previous studies, the processing times of all components were fixed in order scheduling problems. This is unreasonable because a steady decline in processing time usually occurs when the same task is performed repeatedly in practical situations. Therefore, we propose a multiple-machine order scheduling problem with a learning effect to minimize the total tardiness. We develop a branch-and-bound algorithm incorporating certain dominance rules and three lower bounds for obtaining the optimal solution. Subsequently, we propose simulated annealing, particle swarm optimization, and order-scheduling MDD algorithms for obtaining a near-optimal solution. In addition, the experimental results of all proposed algorithms are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.