Abstract

The origin recognition complex 1 (ORC1) is the largest subunit of the ORC, the heteromeric hexamer. ORC1 is an essential component of the pre-replicative complex (pre-RC) that licenses eukaryote DNA replication origins. The levels of ORC1 fluctuate during the mitotic cell cycle in Drosophila as well as in some human cells. Proteolysis of ORC1 occurs at the end of M phase in Drosophila, which is mediated by the anaphase-promoting complex (APC), and in late S phase in human cells by Skip-Cullin-F box (SCF). Previously we showed that proteolysis of ORC1 by APC is mediated by the ORC1 destruction box (the O-box), an APC motif conserved among species yet distinct from the D-box or KEN-box. Recently we showed that replacing the O-box with the D-box (ORC1O→D) changes the degradation profile of ORC1 during a canonical cell cycle. Here we report further characterization of the ORC1O→D allele that turned out to be a useful tool to examine the function of ORC1 in other modes of DNA replication during oogenesis. In endoreplication stages ORC1O→D does not change any DNA content profiles, consistent with our previous finding that ORC is dispensable for endoreplication. However, in amplification stage replication efficiency of ORC1O→D is drastically reduced, which resulted in amplification defects that led to thin egg shell phenotype. Taken together, our analyses show that orc1 allele newly identified is female sterile and possesses a unique feature of phenotypes that are distinct in different modes of DNA replication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call