Abstract

BackgroundThe bimolecular fluorescence complementation (BiFC) assay is commonly used for investigating protein–protein interactions. While several BiFC detection systems have been developed, there is a limited amount of research focused on using laser scanning confocal microscope (LSCM) techniques to observe protoplasts. Protoplasts are more susceptible to damage and instability compared to their original cell state due to the preparation treatments they undergo, which makes it challenging for researchers to manipulate them during observation under LSCMs. Therefore, it is crucial to utilize microscope techniques properly and efficiently in BiFC assays.ResultsWhen the target fluorescence is weak, the autofluorescence of chloroplast particles in protoplasts can interfere with the detection of BiFC signals localized in the nuclear region. Spectrum analysis revealed that chloroplast autofluorescence can be excited by lasers of various types, with the highest fluorescence signal observed at around 660 nm. Furthermore, our investigation into the impact of different pipette tips on the integrity of protoplast samples indicated that the utilization of cut tips with larger openings can mitigate cell breakage. We presented a workflow of LSCM techniques for investigating protoplast BiFC and discussed the microscopic manipulation involved in sample preparation and image capturing.ConclusionWhen the BiFC signals are weak, they may be affected by chloroplast autofluorescence. However, when used properly, the autofluorescence of chloroplasts can serve as an excellent internal marker for effectively distinguishing other signals. In combination with other findings, this study can provide valuable reference for researchers conducting BiFC assays and related studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.