Abstract
In this paper a quite general formulation of sequential pattern recognition processes is presented. Within the framework of this formulation, a procedure is obtained for the simultaneous optimization of the stopping rule and the stage-by-stage ordering of features as the process proceeds. This optimization procedure is based on dynamic programming and uses as an index of performance the expected cost of the process, including both the cost of feature measurement and the cost of classification errors. A simple example illustrates the important computational aspects of the procedure and indicates the form of the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.