Abstract
Heavy metals are naturally occurring trace elements present in the environment, including soil, water, and air. However, high heavy metal concentration contamination from waste is a serious environmental problem brought on by industrial activities. The research in this study evaluated different biomineralized CaCO3 forms from individual bacteria species in heavy-metal-contaminated soils and mine tailings. Scanning electron microscope (SEM) images of the crystals were used to characterize the precipitated CaCO3. Generally, urea-hydrolysis bacteria form minerals via a microbiologically induced calcite precipitation (MICP) process. These bacteria produce the urease enzyme, which leads to urea-hydrolysis. These bacteria were isolated from heavy-metal-contaminated soils and characterized for their potential utilization in the S/S process. Optimum conditions for indigenous bacterial growth were 30 °C and a pH range of 7–8; and growth patterns were further affected by the growth medium salinity. SEM and X-ray diffraction (XRD) analyses demonstrated that bioaccumulated heavy metal ions were deposited around the cell envelope as rhombohedral and sphere shaped crystalline carbonate minerals in optimum conditions. In this study, the authors hypothesize that the indigenous bacteria can effectively precipitate heavy metals in soil and mine tailing with the urea-hydrolysis enzyme, and play an important role in heavy metal stabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.