Abstract
We present a general optimization-based framework for stochastic control problems with nonclassical information structures. We cast these problems equivalently as optimization problems on joint distributions. The resulting problems are necessarily nonconvex. Our approach to solving them is through convex relaxation . We solve the instance solved by Bansal and Başar (“Stochastic teams with nonclassical information revisited: When is an affine law optimal?”, IEEE Trans. Automatic Control, 1987) with a particular application of this approach that uses the data processing inequality for constructing the convex relaxation. Using certain f-divergences, we obtain a new, larger set of inverse optimal cost functions for such problems. Insights are obtained on the relation between the structure of cost functions and of convex relaxations for inverse optimal control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.