Abstract

This paper presents a filterless sensorless control scheme with an optimized time sequence based on high-frequency (HF) square-wave voltage injection for a five-phase interior permanent magnet machine (IPMSM) drive. To avoid the utilization of low-pass filters (LPFs) in signal processing, an effective method without filters is proposed in this paper. Moreover, the cross-coupling magnetic saturation is analyzed and the online position error compensation is applied based on the offline measurements and finite-element analysis (FEA). Besides, compared with the conventional time sequence of senseorless control, the proposed optimized time sequence can eliminate the additional position estimation error caused by the time delay in digital implementation. Numerical simulations and experiments with a 2-kW five-phase IPMSM are carried out. The results verify the feasibility and effectiveness of the proposed sensorless control scheme with an optimized time sequence adopted by the IPMSM drives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call