Abstract

The five-level active neutral-point-clamped (5L-ANPC) converter has been widely studied for its excellent performance in high-power medium-voltage applications. This paper analyzes the space vector pulse width modulation (SVPWM) strategy of the 5L-ANPC converter in the virtual coordinate, and presents an optimized control strategy which can balance the neutral point (NP) voltage and avoid the dead-time effects for the first time. In this strategy, on one hand, the 125 space vectors are combined by 96 triangles in the seven-segment vector synthesis method, then the triangles are divided into seven categories which have different characteristics of balancing the NP voltage, and every category has its own principles to choose the vector sequence and compute the vector durations. On the other hand, the dead-time effects of the 5L-ANPC converter are studied in detail and the transitions between different switching states are constrained in the optimized control strategy to avoid the dead-time effects that cannot be compensated by traditional pulse-based dead-time compensation methods. Finally, the optimized SVPWM strategy is experimentally verified in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.