Abstract

Virus-induced gene silencing (VIGS) is used to down-regulate endogenous plant genes. VIGS efficiency depends on viral proliferation and systemic movement throughout the plant. Although tobacco rattle virus (TRV)-based VIGS has been successfully used in petunia (Petunia × hybrida), the protocol has not been thoroughly optimized for efficient and uniform gene down-regulation in this species. Therefore, we evaluated six parameters that improved VIGS in petunia. Inoculation of mechanically wounded shoot apical meristems induced the most effective and consistent silencing compared to other methods of inoculation. From an evaluation of ten cultivars, a compact petunia variety, 'Picobella Blue', exhibited a 1.8-fold higher CHS silencing efficiency in corollas. We determined that 20 °C day/18 °C night temperatures induced stronger gene silencing than 23 °C/18 °C or 26 °C/18 °C. The development of silencing was more pronounced in plants that were inoculated at 3–4 versus 5 weeks after sowing. While petunias inoculated with pTRV2-NbPDS or pTRV2-PhCHS showed very minimal viral symptoms, plants inoculated with the pTRV2 empty vector (often used as a control) were stunted and developed severe necrosis, which often led to plant death. Viral symptoms were eliminated by developing a control construct containing a fragment of the green fluorescent protein (pTRV2-sGFP). These optimization steps increased the area of chalcone synthase (CHS) silencing by 69 % and phytoene desaturase (PDS) silencing by 28 %. This improved VIGS protocol, including the use of the pTRV2-sGFP control plants, provides stronger down-regulation for high-throughput analyses of gene function in petunia.Electronic supplementary materialThe online version of this article (doi:10.1007/s11105-013-0647-3) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.