Abstract

Sweet basil (Ocimum basilicum L.; Fam. Lamiaceae) is an annual herbaceous plant with a high economic value used in folk medicine, pharmacology, and food production. In Italy, most of the varieties are used to produce the famous “pesto” sauce; however, almost all of them are susceptible to basil downy mildew (BDM) disease, strongly decreasing the growth of the fresh leaves and the survival of the whole plant. Nowadays, CRISPR/Cas9 technology is recognized to be a prominent way to enhance basil genetic breeding. In this work, we present an optimized protocol for in vitro direct regeneration of an elite cultivar, which is the major limiting factor for the transformation of O. basilicum. Regeneration has been obtained from different explants (leaves, cotyledons, cotyledonary nodes); the highest frequency has been obtained from cotyledonary nodes of seedlings germinated on MS medium containing TDZ. This protocol may be used for biotechnological applications as genome editing techniques to obtain basil-downy-mildew-disease-resistant clones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.