Abstract

When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.