Abstract

An optimized workflow for multiplexed and spatially localized on-tissue quantitative protein analysis is here presented. The method is based on the use of an enzyme delivery platform, a polymeric hydrogel disc, allowing for a localized digestion directly onto the tissue surface coupled with an isobaric mass tag strategy for peptide labeling and relative quantification. The digestion occurs within such hydrogels, followed by peptide solvent extraction and identification by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Since this is a histology-directed on-tissue analysis, multiple hydrogels were placed onto morphologically and spatially different regions of interest (ROIs) within the tissue surface, e.g., cardiac myxoma tumor vascularized region and the adjacent hypocellular area. After a microwave digestion step (2min), enzymatically cleaved peptides were labeled using TMT reagents with isobaric mass tags, enabling analysis of multiple samples per experiment. Thus, N = 8 hydrogel-digested samples from cardiac myxoma serial tissue sections (N = 4 from the vascularized ROIs and N = 4 from the adjacent hypocellular areas) were processed and then combined before a single LC-MS/MS analysis. Regulated proteins from both cardiac myxoma regions were assayed in a single experiment. Graphical abstract The workflow for histology-guided on-tissue localized protein digestion followed by isobaric mass tagging and LC-MS/MS analysis for proteins quantification is here summarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call