Abstract

By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit–explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfrog HIE-FDTD method is obtained by introducing the relative permittivity and permeability tensors in the original one-step leapfrog HIE-FDTD method. The Courant–Friedrichs–Lewy (CFL) stability condition of the AA one-step leapfrog HIE-FDTD method is close to that of the original one-step leapfrog HIE-FDTD method. In addition, the proposed HIE-FDTD method has lower numerical dispersion error and higher calculation accuracy than that of the one-step leapfrog HIE-FDTD method. Finally, to testify the characteristics of the proposed HIE-FDTD method, numerical simulation experiments are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call