Abstract
The fastest-evolving technology, the Internet of Things (IoT), will advance the fields of agriculture, defense, and medical electronics. IoT is focused on giving every object a purpose. IoT with cloud assistance offers a potential remedy for the issue of data expansion for individual objects with restricted capabilities. With the increasing use of cloud technology, the Internet of Things (IoT) has encountered additional security hurdles when it comes to exchanging data between two parties. To address this issue, a thorough investigation was conducted into a secure cloud-assisted strategy for managing IoT data, which ensures the safety of data during its collection, storage, and retrieval via the cloud, while also considering the growing number of users. To achieve this, a lightweight security mechanism that is optimized at the node level is implemented in the proposed system. By utilizing our technology, a secure IoT infrastructure can be established to prevent the majority of data confidentiality threats posed by both insiders and outsiders. Using a heartbeat sensor and a node MCU, we create a heartbeat monitoring system. At the node MCU level, giving security to the patient's health data and preventing unauthorized users from attacking it. Smaller key sizes and lightweight security techniques for IoT devices with minimal power, lower power and memory consumption and Execution time, transmission capacity reserve is used to achieve security. In order to achieve this. The performance of the RSA and ECC algorithms in terms of execution time, power consumption, and memory use have been tabulated for this experimental arrangement. The ECC method occurs to produce the best results in tiny devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.