Abstract

Bitcoin exchange security is crucial because of MEC's widespread use. Cryptojacking has compromised MEC app security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and AdaHessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and AdaHessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE 0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consumption, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cybersecurity issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.