Abstract

This study proposes an optimized hybrid encryption framework combining ECC-256r1 with AES-128 in EAX mode, tailored for smart home healthcare environments, and conducts a comprehensive investigation to validate its performance. Our framework addresses current limitations in securing sensitive health data and demonstrates resilience against emerging quantum computing threats. Through rigorous experimental evaluation, we show that the proposed configuration outperforms existing solutions by delivering unmatched security, processing speed, and energy efficiency. It employs a robust yet streamlined approach, meticulously designed to ensure simplicity and practicality, facilitating seamless integration into existing systems without imposing undue complexity. Our investigation affirms the framework's capability to resist common cybersecurity threats like MITM, replay, and Sybil attacks while proactively considering quantum resilience. The proposed method excels in processing speed (0.006 seconds for client and server) and energy efficiency (3.65W client, 95.4W server), offering a quantum-resistant security level comparable to AES-128. This represents a security-efficiency ratio of 21.33 bits per millisecond, a 25.6% improvement in client-side processing speed, and up to 44% reduction in server-side energy consumption compared to conventional RSA-2048 methods. These improvements enable real-time encryption of continuous health data streams in IoT environments, making it ideal for IoT devices where AES-128′s smaller footprint is advantageous. By prioritizing high-grade encryption alongside ease of use and implementation, the proposed framework presents a future-proof solution that anticipates the trajectory of cryptographic standards amid advancing quantum computing technologies, signifying a pivotal advancement in safeguarding IoT-driven healthcare data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.