Abstract

The cyber security field has witnessed several intrusion detection systems (IDSs) that are critical to the detection of malicious activities in network traffic. In the last couple of years, much research has been conducted in this field; however, in the present circumstances, network attacks are increasing in both volume and diverseness. The objective of this research work is to introduce new IDSs based on a combination of Genetic Algorithms (GAs) and Optimized Gradient Boost Decision Trees (OGBDTs). To improve classification, enhanced African Buffalo Optimizations (EABOs) are used. Optimization Gradient Boost Decision Trees (OGBDT-IDS) include data exploration, preprocessing, standardization, and feature ratings/selection modules. In high-dimensional data, GAs are appropriate tools for selecting features. In machine learning techniques (MLTs), gradient-boosted decision trees (GBDTs) are used as a base learner, and the predictions are added to the set of trees. In this study, the experimental results demonstrate that the proposed methods improve cyber intrusion detection for unused and new cases. Based on performance evaluations, the proposed IDS (OGBDT) performs better than traditional MLTs. The performances are evaluated by comparing accuracy, precision, recall, and F-score using the UNBS-NB 15, KDD 99, and CICIDS2018 datasets. The proposed IDS has the highest attack detection rates, and can predict attacks in all datasets in the least amount of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.