Abstract

Mobile robots (MRs) typically require running for many hours on one charge of the battery. Electric autonomous mobile robots (AMRs) have become increasingly common in the manufacturing process in the last few years. MRs must often complete difficult assignments while gathering information across an unknown area involving energy constraints and time-sensitive preferences. This paper estimates the information collection assignment for surveillance as a multi-objective optimization dilemma with both energy and time constraints. In this study, three main objectives during acquiring data are taken into consideration, including the greatest quantity of data acquired for surveillance, following a path where obstacles are least likely to be experienced, and traveling the smallest feasible path. To obtain the optimal path for an MR by addressing the presented issue, this approach presents an intelligent particle swarm optimization (PSO) technique that determines fitness value by simplifying the optimization task for achieving the shortest path for MR navigation. It allows particles to execute variable operations while maintaining most of the prior search information. The findings of the simulation show that this technique of the PSO algorithm can realize swift convergence and high accuracy when compared with different benchmark functions derived for PSO. A comparative discussion on various energy-efficient navigation techniques for MRs is also provided. Lastly, this study describes the possible future research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call