Abstract

Plasmopara halstedii, the causal agent of downy mildew of sunflower, is an oomycete listed as a quarantine pathogen. This obligate parasite resides in a quiescent state in seeds of sunflower and can be spread from seed production areas to areas of crop production by international seed trade. To prevent the spread or the introduction of potentially new genotypes or fungicide-tolerant strains, an efficient method to detect P. halstedii in sunflower seed is required. This work reports the optimization of a real-time detection tool that targets the pathogen within sunflower seeds, and provides statistically validated data for that tool. The tool proved to be specific and inclusive, based on computer simulation and in vitro assessments, and could detect as few as 45 copies of target DNA. A fully optimized DNA extraction protocol was also developed starting from a sample of 1,000 sunflower seeds, and enabled the detection of <1 infected seed/1,000 seeds. To ensure reliability of the results, a set of controls was used systematically during the assays, including a plant-specific probe used in a duplex quantitative polymerase chain reaction that enabled the assessment of the quality of each DNA extract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.