Abstract

Traditional fossil fuels, which are also depleting cause environmental problems. A significant portion of global energy consumption is due to building air conditioning systems. Nowadays, considerable attention is drawn to renewable and sustainable energy sources to support the energy requirements of buildings. In this study, a solar absorption chiller was designed for a three-floor residential building in hot and arid climate. At first, thermal loads in the building were calculated using Carrier software. The material and color of the exterior walls, as well as window types, were changed to reduce the heat transfer coefficient and get an optimum design. Results indicate that by using the optimum design, maximum heating load reduction and maximum cooling load reduction can be achieved with approximate rates of 37 % and 12 %, respectively. Considering safety factor and based on the maximum cooling load, a single-effect LiBr-water solar absorption chiller was designed for the optimum building. Two different scenarios were suggested using two types of flat plate and evacuated tube collector. Results show that in the case of evacuated tube collector the net collector area of 254.18 m2 is sufficient to supply the cooling power. Implementing flat plate collectors would result in occupying an area of 398.5 m2. Regarding the limitation of total area of roof and efficiency issues, the evacuated tube collector is the best option.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.