Abstract

In this paper, we derive a recursive algorithm for finite field multiplication over GF(2m) based on irreducible all-one-polynomials (AOP), where the modular reduction of degree is achieved by cyclic-left-shift without any logic operations. A regular and localized bit-level dependence graph (DG) is derived from the proposed algorithm and mapped into an array architecture, where the modular reduction is achieved by a serial-in parallel-out shift-register. The multiplier is optimized further to perform the accumulation of partial products by the T flip flops of the output register without XOR gates. It is interesting to note that the optimized structure consists of an array of (m+1) AND gates between an array of (m+1) D flip flops and an array of (m+1) T flip flops. The proposed structure therefore involves significantly less area and less computation time compared with the corresponding existing structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call