Abstract

Microplastic pollution in the environment has received growing attention worldwide. A major impediment for accurate measurements of microplastics in environmental matrixes is to extract the particles. The most commonly-used method for separation from soil or sediment is flotation in dense liquid based on the relatively low density of plastic particles. This study provides an improved and optimized process for extraction of microplastic particles by modifying the floatation technique and floatation solution. Microplastics in soils and sediments are extracted by adding 200 g dry soil or sediment sample to 1.3 L mix of the saturated NaCl and NaI solutions in a volume ratio of 1:1 and aerating for 40 s then filtering the supernatant. The accuracy and precision of the new approach is validated by recovery experiments using soil and sediment samples spiked with six common microplastic compounds: polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and expanded polystyrene (EPS), and comparison with the previous method. The optimized approach is further compared with the previous approach using the real soil and sediment samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.