Abstract

The rise of edge smart IoT devices has led to the development of edge storage systems (ESS) for efficient access to massive edge data. ESS can reduce the load on cloud centers and improve user experience. However, ESS still faces challenges in improving fault tolerance and efficiency. Thus, there is a need for a secure and efficient fault-tolerant storage scheme. Existing schemes have drawbacks like high edge storage overhead, difficulty in protecting edge data privacy, and low data writing performance. To address these issues, we propose a Hierarchical Cloud-Edge Collaborative Fault-Tolerant Storage (HCEFT) model. This model aims to enhance system robustness, reduce edge storage overhead, and ensure edge data privacy. We also introduce an optimization method for data writing in HCEFT, called ECWSS (Erasure Code data Writing method based on Steiner tree and SDN). This method improves the trade-off between data writing time and traffic consumption. Our scheme improves data robustness, availability, and security. Additionally, the writing optimization method reduces data write time by 13%-67% and network traffic consumption by 20%-62%, enhancing network load balance performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.