Abstract

This article presents a novel approach to model the mechanical response of smart polymeric materials. A cyclobutane-based mechanophore, named “smart particle” in this article, is embedded in an epoxy polymer matrix to form the self-sensing smart material. A spring–bead model is developed based on the results from molecular dynamics simulation at the nanoscale to represent bond clusters of a smart polymer. The spring–bead network model is developed through parametric studies and mechanical equivalence optimization to represent the microstructure of the material. A statistical network model is introduced, which is capable of bridging the high-accuracy molecular dynamics model at the nanoscale and the computationally efficient finite element model at the macroscale. A comparison between experimental and simulation results shows that the multiscale model can capture global mechanical response and local material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call