Abstract

AbstractRecently, a new differential discontinuous formulation for conservation laws named the Correction Procedure via Reconstruction (CPR) is developed, which is in-spired by several other discontinuous methods such as the discontinuous Galerkin (DG), the spectral volume (SV)/spectral difference (SD) methods. All of them can be unified under the CPR formulation, which is relatively simple to implement due to its finite-difference-like framework. In this paper, a different discontinuous solution space including both polynomial and Fourier basis functions on each element is employed to compute broad-band waves. Free-parameters introduced in the Fourier bases are optimized to minimize both dispersion and dissipation errors through a wave propagation analysis. The optimization procedure is verified with a mesh resolution analysis. Numerical results are presented to demonstrate the performance of the optimized CPR formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.