Abstract

Consumer Internet of Things (CIoT) manufacturers seek customer feedback to enhance their products and services, creating a smart ecosystem, like a smart home. Due to security and privacy concerns, blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their machine learning (ML) models using end-user data. Federated learning (FL) uses privacy-preserving ML techniques to forecast customers’ needs and consumption habits, and blockchain replaces the centralized aggregator to safeguard the ecosystem. However, blockchain technology (BCT) struggles with scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation are other issues. This research introduces a novel architecture, emphasizing gateway peer (GWP) in the blockchain network to address scalability, ledger optimization, and secure model transmission issues. In the architecture, we replace the centralized aggregator with the blockchain network, while GWP limits the number of local transactions to execute in BCN. Considering the security and privacy of FL processes, we incorporated differential privacy and advanced normalization techniques into ML processes. These approaches enhance the cybersecurity of end-users and promote the adoption of technological innovation standards by service providers. The proposed approach has undergone extensive testing using the well-respected Stanford (CARS) dataset. We experimentally demonstrate that the proposed architecture enhances network scalability and significantly optimizes the ledger. In addition, the normalization technique outperforms batch normalization when features are under DP protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.