Abstract
In this research, an embedded metal oxide semiconductor (MOS) electronic nose (e-nose) was designed to detect Chinese pecan quality. To improve the performance of e-nose, three types of features were extracted to form initial feature matrix, including mean-differential coefficient value, stable value, and response area value. Furthermore, followed by the non-search feature selection strategy, optimized feature matrix was obtained through the procedure of mean analysis, variation coefficient analysis, cluster analysis and correlation analysis. It was observed that pecans were better classified after the optimization of initial feature matrix, shown by principal component analysis (PCA) score plot. And also the regression models of optimized feature matrix established by partial least squares regression (PLSR) (R2 = 0.9377) and back propagation neural networks (BPNN) (R2 = 0.9787) presented a better prediction capacity than these of initial one (PLSR: R2 = 0.8887; BPNN: R2 = 0.9093). In conclusion, the optimization method not only reduced data dimensionality but also improved electronic nose performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.